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Internal hydraulic jumps at T-junctions 
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(Received 15 October 1993 and in revised form 5 December 1995) 

This paper presents a theoretical investigation of the occurrence of hydraulic jumps 
in two-layer systems induced by extraction of fluid from the upper layer. The physical 
configuration consists of a horizontal main pipe along which air and water flow, and 
a vertically upward side arm. An hydraulic model based on the momentum principle 
assuming that the fluids do not mix is developed that leads to at least two possible 
conjugate states for any given two-layer flow. A method of determining the amount 
of gas which must be extracted into the side arm for a jump to occur is developed 
and predictions shown to be in reasonable agreement with observation. Unusually, 
it is shown that above this critical gas take-off value two possible states remain 
energetically feasible. 

1. Introduction 
The division of a two-layer flow at a T-junction is important in the design of 

equipment used in oil and gas production and is a common feature of many chemical 
plants. Maldistribution of the fluids between the outlets can have a significant effect 
on the behaviour of equipment downstream of the junction far exceeding the size 
of the junction relative to the complete plant. For example, when steam injection is 
being used to effect enhanced recovery of viscous oils, the steam is usually generated 
at a central point and distributed to a number of wells. This can involve several 
junctions. In this process it is important to know where the water (either that coming 
from the boiler because of incomplete evaporation or that due to condensation of 
steam along the transmission lines) goes to, as water having much lower enthalpy 
than steam is much less effective at lowering the viscosity of the oil. Other examples 
include the pipework feeding a bank of air-cooled heat exchangers in the process 
industries, and loss of coolant accidents (LOCA) in nuclear power reactors of the 
Pressurized Water Reactor type. Apart from these cases where the phase separation 
can constitute a major problem, there are examples where the phenomenon has been 
used to advantage. In multi-bottle slug catchers used in oil and gas production, a 
two-phase flow is divided through a series of T-junctions into a number of large 
diameter pipes set at a small downward inclination. Each of these pipes contains a 
T-junction with a side arm emerging from the top of the main pipe. Most of the 
gas emerges from the side arm whilst the liquid continues along the main pipe. All 
gas outlets are manifolded to lead into the gas processing equipment, and there is a 
similar arrangement for the liquid. Obviously, correct operation relies on complete 
phase separation at the vertical side arm junctions. As discussed by Azzopardi (1993), 
the incorporation of T-junctions as partial separators into phase separation systems 
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FIGURE 1. Example of the increase in the liquid level. (a) G’ = 0.55 and (b)  G’ = 0.75. Gas flow rate 
= 0.024 kg s-’, liquid flow rate = 0.063 kg s-’, main tube diameter = 0.038 m, side arm diameter 
= 0.025 m, inlet pressure = 3 bar. 

can lessen the load on the main scparator, leading to smaller units which arc casier 
to manufacture. 

The split of an air-water flow at a T-junction with a horizontal main pipe of 
diameter 0.038 m and a vertically upward side arm of diameter 0.025 m has been 
studied experimentally by Azzopardi & Smith (1992). Under certain conditions they 
observed an abrupt change in thc interface level of an approaching two-layer flow 
analogous to a hydraulic jump found in free surface flows. This phenomenon is 
shown illustratively in figure 1. A measure of the amount of gas extracted into the 
side arm is usually expressed as the mass fraction of the inlet gas flow which is 
taken off and is denoted by G’ in this paper. There exists a critical value of gas 
take-off above which a significant increase in the liquid level occurs, and for the inlet 
conditions of figure 1, this value was observed by Azzopardi & Smith (1992) to be 
0.69. At higher take-off values the increase in the liquid height and the presence of a 
local turbulence associated with the hydraulic jump facilitates the inception of liquid 
take-off. This leads to, for example, inefficient phase separation if the junction is 
being used as a phase separator, and hence prediction of the occurrence of hydraulic 
jumps is extremely important. 

Experimental and theoretical studies of hydraulic jumps in one- and two-layer 
systems have been presented in the literature (see McCorquodale 1986). The number 
of works for the two-layer case is considerably less than that for a single-layer, and 
for jumps with negligible mixing of the layers, there are three main approaches which 
have been reported. The application of the momentum principle to individual layers 
was first suggested by Yih & Guha (1955) and use of this theory is still common 
(Rajaratnam, Tovell & Loewen, 1991). They considered flows in horizontal rectangular 
channels with a free upper surface and assumed that no momentum was transferred 
between the layers, the shear at the boundaries and the interface were negligible and 
a hydrostatic distribution of pressure. To enable separate momentum equations to be 
written for each layer, they made the additional assumption that the mean pressure 
over the jump section could be taken as the average of the upstream and downstream 
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pressures at the interface. The solution of the resulting momentum equations together 
with the continuity equations for each layer yielded at most four possible conjugate 
depths including the upstream state itself. The determination of a unique conjugate 
state was investigated by Hayakawa (1970) on imposing the condition that energy 
loss is required at the hydraulic jump. It was found that there always existed a 
solution of the momentum equations which was not a legitimate solution. Mehrohtra 
& Kelly (1973) extended this approach to bounded two-layer flows, and suggested 
that of the two resulting legitimate solutions, the physical solution would approach 
an infinitesimally weak jump in the limit when the conditions upstream of the jump 
tend to the critical state. A conclusion was that the conjugate state that is closer to 
the upstream state was physically realizable for both open and closed channels. 

Chu & Baddour (1977) and Wood & Simpson (1984) have queried the assumptions 
of Yih & Guha (1955) since they imply that the contracting layer gains energy 
without associated work being done on it. Chu & Baddour (1977) instead assumed 
that the energy loss in the contracting layer was negligible and that the combined 
momentum of the layers was conserved. Elimination of the unknown downstream 
pressure resulted in a particularly simple conservation relationship if prior knowledge 
of the contracting layer was available. 

The theories of Yih & Guha (1955) and Chu & Baddour (1977) have been evaluated 
experimentally for jumps in the lee of a towed obstacle and for a jump advancing 
into stationary layers by Wood & Simpson (1984). Even though experiments were 
carried out with saline and fresh water layers and so jump phenomena would almost 
certainly involve an interfacial mixed layer, both theories whilst neglecting the mixing 
of the fluids gave similar results differing only when the shear on the interface became 
large. 

A different approach has been presented by Armi (1986) for the special case of 
weak internal hydraulic jumps based on energy equations. If no energy is lost at the 
jump section, the resulting conservation-of-energy equations can be solved together 
with the continuity equations for a unique conjugate depth. This approach thus 
avoids the non-uniqueness problems inherent in the use of the momentum equations, 
but can exclude cases of major interest. 

For internal hydraulic jumps at T-junctions, it is not obvious which of these 
theories, if any, is applicable to determine the liquid height downstream of the side 
arm. The situation is considerably more complex than for two-layer flow in a channel, 
and there are now two unknown pressure drops: one between the inlet and the side 
arm outlet, AP13(= P3 - P I ) ,  and the other between the inlet and the downstream 
outlet in the main pipe, API2(= P2 - P I ) .  Subscripts 1 and 2 are used to indicate 
upstream and downstream sections in the main pipe, and 3 the flow in the side arm. 
The fraction of gas taken off into the side arm, G’, is effectively a measure of AP13, 
leaving the pressure drop AP12 as an unknown parameter. In $2, we argue that AP12 
must be given for this system by determining the direction information is propagating 
in the downstream flow. 

Although there may be a loss of energy between the upstream and downstream 
states of a jump due to turbulence, momentum is always conserved. In $3, the 
momentum principle is applied to the tee and the resulting equation solved to yield 
the possible downstream liquid heights for given values of APIz and G’. The results 
are compared in $4 with measurements of the liquid height reported by Azzopardi & 
Smith (1992) for which G’, but not AP12, is known. 

It is debatable whether there is a sufficient loss of energy at the jump to discount 
a theory utilizing an energy equation for the contracting layer (Chu & Baddour 
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1977), or for both layers (Armi 1986). Either theory allows the downstream liquid 
layer height to be determined for a given gas take-off value without prescribing 
AP12, contradicting the arguments presented in $ 2. Nonetheless, for completeness, the 
results of the extension of the theories of Chu & Baddour (1977) and Armi (1986) 
to account for fluid extraction from the upper layer are presented in $5, and results 
shown to be in poor agreement with data. Finally, in $ 6  we suggest a method to 
determine the critical gas take-off, and present conclusions in $ 7. 

2. Information propagation 
It is important to be aware of which direction information is propagated by long, 

small-amplitude gravity waves on the interface between the fluids in the main pipe 
of the T-junction. By analysing such waves in a channel of uniform rectangular 
cross-section with arbitrary velocities in the two layers, Armi (1986) showed that the 
two characteristic velocities are given by 

A- = u,,, f c, (2.1) + 

where the convective velocity, u,,,, and the phase speed, c, are given by 

ru& + U L h C  

h ~ + h ~  ’ 
&on = 

and 

c =  { g ’ -  hG h ~ h ~  + h L  [l-  r(UG g ’ ( h G  - + UL)’ h L )  ]}1’2, 

where u, h, p are the layer velocity, thickness and density respectively, subscripts G 
and L denote the gas and liquid phases, r = p G / p L  and g’ = (1 - r ) g .  As explained 
by Dalziel (1991), if the characteristic velocities are of opposite signs, information is 
able to propagate in both directions and the flow is said to be subcritical. In contrast, 
if the velocities are of opposite sign, information about any disturbance is able to 
propagate in one direction only and the flow is said to be supercritical. The ratio 
of the convective velocity, u,,,, to the phase speed, c, is traditionally known as the 
Froude number, Fr, see Lawrence (1990). The flow is thus supercritical or subcritical 
depending on whether the Froude number is greater than or less than unity. 

Azzopardi & Smith (1992) measured the downstream liquid height at various gas 
take-off values with inlet gas and liquid mass flow rates of 0.024 and 0.063 kg s-l 
respectively. To calculate the characteristic velocity or Froude number of these flows, 
one has to account for the difference in the geometry in which the measurements 
were taken and the above equations apply. As suggested by Chow (1959), the liquid 
depth used in the channel flow calculations is assumed to be equal to a liquid depth 
defined as the area occupied by the liquid divided by the width of the interface. 
It is also assumed that the channel has a square cross-section of width equal to 
the pipe diameter, and the upstream velocities determined from the inlet mass flow 
rates. To calculate the downstream velocities for a given gas take-off, the continuity 
equations (3.1~)  and (3.lb) are applied. The resulting characteristic velocities and 
Froude numbers for the downstream heights measured by Azzopardi & Smith (1992) 
dimensionalized with respect to the pipe diameter D are shown in table 1. The 
downstream flow is calculated to be supercritical for gas take-off values below 0.622, 
and subcritical above 0.715 when a significant increase in the downstream liquid height 
occurs. We thus argue that the downstream pressure, or the pressure change AP12, 
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G' h / D  ii 1- Fr 
0.0 0.17 0.493 0.145 1.831 

0.622 0.22 0.520 0.089 1.408 
0.715 0.38 0.532 -0.011 0.960 
0.798 0.39 0.533 -0.019 0.933 
0.913 0.39 0.533 -0.021 0.926 
0.958 0.38 0.533 -0.015 0.944 

TABLE 1. Calculated values of the characteristic velocities and Froude number 

- 5 7 2  I 

FIGURE 2. A definition sketch of the flow at the T-junction. 

must be specified for this problem to determine the downstream liquid height when 
a significant increase occurs and the flow is subcritical with information propagating 
in both directions. 

Further evidence is provided by observation of the waves on the common interface 
between the two layers. Energy loss from a mean flow can, and often does, manifest 
itself in wave energy (Benjamin & Lighthill 1954). Video recordings of the interface 
reveal that a stationary wave train exists in the downstream arm which may carry 
energy away from the junction. This would indicate that the flow is subcritical and 
influenced by the downstream boundary conditions, as calculated above. 

3. The model 
A definition sketch is shown in figure 2 depicting a T-junction with a horizontal 

main pipe and a vertically upward side arm. The pressure at the upper bounding 
surfaces, the mean velocity, the density, the phase area and the liquid height are 
denoted by P , u , p , A  and h respectively. Subscripts 1 and 2 are used to indicate 
upstream and downstream sections in the main pipe, and 3 the flows in the side arm. 

For the purposes of this section, we shall determine the downstream liquid height 
given the gas take-off for various values of the pressure change along the main pipe 
AP12. The usual three assumptions used in the study of two-layer flow known as 
the hydraulic assumptions are applied: (i) the fluids are inviscid, (ii) the pressure is 
hydrostatic, and (iii) within each layer the density is constant and the velocity only 
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varies in the flow direction. Energy loss at the jump, however, is assumed to occur by 
viscous dissipation. It is also assumed that there is no mixing of the fluids. 

3.1. Continuity equations 
If liquid is not extracted into the side arm, the gas and liquid continuity equations 
can be written as 

qCl(1 - G’) = qG2, ( 3 . 1 ~ )  

qL1 = qL2, (3.lb) 
where qKi(= uKiAKi) is the volumetric flow rate of phase K at section i, and G’ is the 
mass fraction of inlet gas flow which is extracted into the side arm. 

and 

3.2. The momentum equation 
An equation relating conditions across the jump may be obtained from conservation 
of total momentum expressed as the flow force S (the horizontal pressure force due 
to depth changes plus momentum flow rate over a cross-section), see Baines (1984) 
and Wood & Simpson (1984). The flow force of the upper and lower layers upstream 
and downstream of the side arm depends upon the cross-sectional shape of the 
channel and expressions are given in Appendix A for channels of square and circular 
cross-section. 

There is a contribution to the net horizontal momentum due to the side arm since 
the action of the turning fluid and the presence of a recirculation zone in the side 
arm results in the normal pressure along the boundary on the inlet side being less 
than that on the opposite side. A net horizontal boundary force, termed the junction 
force F,, thus acts in the inlet direction. A correlation for the junction force with 
only gas flowing through the tee has been given by Katz (1967), who assumed that 
the junction force was proportional to the momentum flux of the turning fluid. The 
constant of proportionality, the so-called Katz parameter, was found to be 0.7 by 
measuring the pressures at the upstream and downstream sections. This approach 
has been successfully extended to two-phase flow by Davis & Fungtamasan (1990) in 
their investigation of the flow of a gas-liquid mixture in the froth-bubbly flow regime 
at a T-junction with a vertical main pipe. They related the junction force to the inlet 
flow mass flux density and branch flow velocity as follows: 

Fx = kx[~lpcuclUG3 + (1  - al)PLULlUL31A3, (3.2) 

where a1 is the upstream void fraction of gas and A3 is the cross-sectional area of the 
side arm. The Katz parameter was found experimentally to have roughly the same 
value as in single-phase flow and hence is taken to be the widely used value of 0.7 
in the subsequent calculations ($4). If liquid is not extracted into the side arm, the 
junction force upon non-dimensionalization with respect to pLgD3 becomes 

( 3 . 3 )  
FZ = rk,G’-, & I 2  

A; 

where A* = AID2 and q* = q/(g1/2D5/2). 
Conservation of the horizontal momentum results in 

S G I  + s L 1  = s C 2  + sL.2 + Fx, (3.4) 

assuming that the jump is short enough for the shear at the boundaries to be negligible. 
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For a T-junction made up of channels of square cross-section, algebraic manipulation 
of the above non-dimensionalized equation using the expressions for the flow forces 
given in Appendix A then yields, upon elimination of the downstream flow rates, the 
following equation for the dimensionless downstream liquid height d2 = h2/D : 

K s ( d 2 ; d l , q ~ l , q ~ l , r ,  G’ , A P )  = - i s d l  + 

+ 421 = 0, ( 3 . 5 ~ )  

where the * notation is now dropped for convenience, dl = h l / D , s  = 1 - r , A P  = 
P12(= P2 - P I )  and as in most practical situations D1 = D2 = D .  For a T-junction 
made up of channels of circular cross-section, the conservation of the total momentum 

3.3. Energy loss 

The main energy losses in the jump region are due to the recirculation zone which 
exists in the side arm and turbulence. We assume that there exists a dividing stream 
surface i2 which separates the inlet gas flow which is extracted into the side arm from 
the fluids which continue to flow downstream along the main pipe as shown in figure 
2. If the energy exchange through i2 is negligible, the energy losses can be considered 
separately. The total loss in the energy flux, AE,  due to the change in the downstream 
liquid height is thus taken to be the loss in the energy flux of the fluids which flow 
downstream in the main pipe. Denoting the specific energy in any layer by E with 
the proper suffix 

LIE = E ~ i u ~ i A ~ i ( 1  - G’) + ELIULIALI - EG2UG2AG2 - E L ~ U L ~ A L ~ .  (3 .6)  

Non-dimensionalizing with respect to pLg3/2D7/2  and using the continuity relations, 
the energy loss can be written as 

AE* = (E;1 - E;2)q;;1(1 - G’) + (EL1 - EL,)qL,, (3.7) 

where the dimensionless specific energies are 

r q i 2  E i  = P* + r + - 
2Ah2’ 

( 3 . 8 ~ )  

and 
.* 2 

q L  EL = P’ + r + ( 1  - r)d + ~ 

2AL2 * 
(3.8b) 
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The dimensionless energy loss of a jump is thus 
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+ { 421 [i-  (%)‘I +s(dl - d 2 ) - A P  
2AZl AL2 

(3.9) 

where the * notation has been dropped for convenience. 
As take-off increases the portion of the inlet flow which continues downstream 

along the main pipe decreases and hence the flux of energy into the jump region 
decreases. The energy loss of a jump is thus displayed in the following sections as the 
relative energy loss, q, between the inlet and outlet sections where 

AE 
s=,l, (3.10) 

and the flux of energy into the system is 

Ei = E ~ i q ~ i ( 1  - G’) + ELiqLi. (3.11) 

For a root of the momentum equation ( 3 . 5 ~ )  or (3%) to be acceptable, the resulting 
change in the interface height must be accompanied by a loss of energy (Hayakawa 
1970). Legitimate solutions must therefore satisfy the following conditions : 

0 < a 2  < 1, (3 .12~)  

ul 2 0. (3.12b) 

4. Predictions 
Solutions of the momentum equations ( 3 3 )  and (3.5b) are sought at all take-off 

values for a range of pressure changes, A P ,  greater than zero. For a T-junction 
composed of channels of square cross-section, a map of the ratio of the downstream 
to the upstream liquid height versus the fraction of gas taken off is displayed in 
figure 3(u). There are two solutions satisfying (3 .12~)  for a range of take-off values 
provided that the pressure change along the main pipe is less than some critical value, 
otherwise no valid solutions occur. The relative energy loss of the solutions in figure 
3(a) is shown in figure 3(b). 

If there is no loss in the energy flux between the upstream and downstream sections, 
equation (3.9) can be manipulated to give an expression for the pressure change in 
the main pipe: 

Upon elimination of the pressure change between equations (3 .5~)  and (4.1) and 
factorization of the full channel and zero liquid height solutions, we obtain the sixth- 
order polynomial given in Appendix B for the downstream liquid heights at which 
there is no loss in the energy flux. Physical solutions of this equation are represented 
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FIGURE 3. (a) Solutions to the momentum equation (3.50) for a T-junction composed of channels 
of square cross-section. The largest to the smallest solution curves correspond to pressure changes 
of 0, 12, 24, 36, 48, 57, 60, 63, 66, 69 and 70.5 N mP2. The dotted line (- - - -) corresponds to the 
conjugate states for which the loss of energy is zero. (b) The dimensionless energy loss curves. The 
curves which are the largest at low take-off values correspond to the first six lower solution curves 
shown in (a). Similarly for the other curves. Inlet conditions and pipe geometry are the same as in 
figure 1. 

by the boundaries (the dotted lines) in figure 3(a). The solution plane is thus divided 
into regions of legitimate and non-legitimate solutions where the energy loss due to 
the change in the liquid level is either positive or negative respectively. It can be 
seen that for differing take-off values, there are either one or two legitimate conjugate 
states. 
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FIGURE 4. Solutions to the momentum equation (3%) for a T-junction composed of channels of 
circular cross-section. The largest to the smallest solution curves correspond to pressure changes of 
0, 12, 24, 36, 48, 57, 60, 63, 66, 69, 70.5 and 72 N m-’. The dotted line (- - - -) corresponds to the 
conjugate states for which the loss of energy is zero. The upward triangles represent experimental 
data from Azzopardi & Smith (1992). Inlet conditions and pipe geometry are as in figure 1. 

The corresponding solution map for a T-junction composed of circular channels is 
displayed in figure 4. The energy boundary is obtained by iterative solution of the 
momentum equation (3.5b) with the pressure change given by equation (4.1). The 
region of legitimate solutions can be seen to be very similar to that calculated with 
channels of square cross-section. If the take-off value is less than about 0.52, only 
one legitimate conjugate state exists. If the take-off value is between 0.52 and 0.73 
or higher than 0.85, one or two legitimate conjugate states can exist depending on 
the downstream pressure. For the remaining take-off values, both solutions are found 
to be energetically possible. The predictions are compared with the measurements 
of the downstream liquid height reported by Azzopardi & Smith (1992) for which 
G’, but not AP, is known. It should be noted that these measurements were taken 
from stills of high-speed video recordings and so may involve significant errors as 
indicated. All but one of the data points lie in the legitimate region; the exceptional 
point corresponds to a particularly wavy interface and is close enough to the energy 
boundary so as not to present undue concern for the validity of the theory. 

For take-off values above 0.715, the observed downstream liquid levels correspond 
to theoretical pressure changes AP in the range 57-66 N m-’, or in dimensionless 
terms AP*(=  A P / p L g D ) ,  in the range 0.153-0.177. Azzopardi & Smith (1992) did not 
measure the downstream pressure and so direct comparison of results is not possible. 
However the pressure change along the main pipe of low-pressure (1.5 bar) two-layer 
flows at a T-junction composed of 0.038 m diameter pipes all on the same horizontal 
plane has recently been measured by Buell, Soliman & Sims (1993). The pressure 
change for three different inlet flows was found to be in the range 9-152 N m-2 
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FIGURE 5. Solutions shown in figure 4 with the greatest energy loss. 

with gas take-off values in the range 0.14-0.98. The magnitude of the theoretical 
pressure required to predict the observed jump heights is consistent with these typical 
measured values. 

For pressure changes in the range 57-66 N mP2, there also are legitimate solutions 
to the momentum equation which are closer to the initial state but are not observed. 
This is in direct contrast to the conclusions of Mehrotra & Kelly (1973). The 
maximum number of possible conjugate states of a given two-layer flow is, however, 
the same as predicted by Hayakawa (1970). The determination of the solution which 
actually occurs is a ‘classical’ problem inherent in the application of the momentum 
principle to which there is no obvious solution. If it is assumed that the state with the 
largest positive energy loss will be observed, then theory predicts the unique solutions 
shown in figure 5. Although a jump is correctly predicted to occur in preference to a 
drop in the interface level at high take-off values, only small increases or drops are 
found at take-off values of 0.715 and 0.798 at which jumps were observed for pressure 
changes in the range 57-66 N mp2. Determination of a unique conjugate state via 
energy arguments thus yields poor agreement with observation. 

5. Jump height predictions without prescribing AP12 

It may be possible that the energy losses that occur at the jump are not significant 
enough to discount a model based on the conservation of energy. If energy losses 
are negligible in the contracting (upper) layer (Chu & Baddour 1977), the pressure 
change along the main pipe can be obtained from the Bernoulli equation for the gas 
phase. It can be seen from equation (3.9) that the pressure change is then given by 

AP =a [I- (g)2(l-G)2] (5.1) 
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FIGURE 6. (a)  Predictions obtained by applying the theories of Chu & Baddour (1977) and Armi 
(1984). The upward triangles represent experimental data from Azzopardi & Smith (1992). ( b )  The 
relative energy loss of the solutions predicted by applying the theory of Chu & Baddour (1977). 
Inlet conditions and pipe geometry as in figure 1. 

Solutions of the momentum equation (3%) with the pressure change given by (5.1) 
are shown in figure 6(a)  and the resulting relative energy loss of the liquid layer in 
figure 6(b). The predictions significantly overpredict the jump heights observed by 
Azzopardi & Smith (1992) and, moreover, there is always a gain in energy in the 
liquid layer instead of a loss, implying that energy is unphysically created within the 
system. 

A simplified model based entirely on the conservation of energy can be formulated 
if it is assumed that the energy loss in both layers is negligible (Armi 1986). The 
pressure change along the main pipe can then be obtained from equation (5.1), or the 
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0 0.2 0.4 0.6 0.8 1 .0 
Fraction of gas taken off 

FIGURE 7. Energy boundaries for a T-junction composed of channels of circular cross-section. 
Liquid flow rate is 0.063 kg s-’; gas flow rate is (i) 0.0126, (ii) 0.024 and (iii) 0.035 kg SKI. Pipe 
geometry as in figure 1. 

following energy equation for the liquid : 

Subtraction of equation (5.1) from (5.2) removes the dominant effect of hydrostatic 
pressure not associated with the internal dynamics and the following expression is 
derived for the downstream liquid height: 

- 3 [l - ( z ) 2 ( l  - G’12] = 0. (5.3) 

An advantage of this method is that a correlation for the junction force is not 
required. However, the solutions of equation (5.3) are shown in figure 6(a) to 
significantly overpredict the data of Azzopardi & Smith (1992). 

6. Critical gas take-off 
In this section, we propose a method to determine the critical gas take-off value 

above which hydraulic jumps and the associated problems may occur based on the 
model of $2. The energy boundary curves obtained by solution of the momentum 
equation (3.5b) with the pressure change given by equation (4.1) are shown in figure 7 
for three different inlet gas flow rates for which measurements of the critical gas take- 
off are reported by Azzopardi & Smith (1992). As the gas take-off is increased, the 
lower solutions for each flow rate represent only slight changes in the liquid level until 
the curve doubles back on itself, after which only large solutions exist with further 
increases in gas take-off. These predicted liquid heights represent extremely large 
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FIGURE 8. A comparison between theoretical values of the critical gas take-off and the values 
observed by Azzopardi & Smith (1992). 

jumps and there would consequently be a great deal of energy loss in both phases 
which contradicts the initial assumption made to calculate the solutions. The gas 
take-off value at which the turning point of each curve occurs is thus the maximum 
value beyond which a significant increase in the liquid level can be expected and is 
thus taken to be the critical gas take-off value at which the jump will form. Figure 
8 compares the resulting critical values with those reported by Azzopardi & Smith 
(1992). Good agreement is found for the highest flow rate cases with deviation from 
the data increasing as the flow rate decreases. There is no obvious reason why this 
trend should be obtained and it may not be observed if more data were available for 
comparison with predictions of the model. 

Applying a similar argument to the predictions obtained from solution of equation 
(5.3) based entirely on an energy approach results in critical take-off values which are 
significantly lower than the observed values as shown in figure 8. 

7. Conclusions 
A model has been derived based on the conservation of momentum to determine 

the liquid height downstream of a vertically upward side arm of a T-junction given 
the inlet flow conditions, the gas take-off and the pressure change along the main 
pipe. Jump heights are predicted which are in agreement with observation; however 
a drop solution is also energetically possible for the same gas take-off value and 
pressure change. The determination of at least two downstream states to a given flow 
is a ‘classical’ result inherent in the use of the momentum principle to which there is 
no obvious solution. 

Theories utilizing the conservation of energy in either the contracting layer or both 
layers allow the downstream liquid height to be determined without prescription of 
the pressure change along the main pipe. However, results are in very poor agreement 
with observation. This gives evidence to support the argument that the pressure 
change along the main pipe must be specified and cannot be predicted when a 
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jump occurs due to the flow being subcritical with information propagating in both 
directions. 

Although the model cannot predict the jump height unless the pressure change 
is known and a method of resolving the non-uniqueness problem is found, the flow 
conditions at which jumps and consequent problems in a system incorporating a tee 
may occur can be predicted. By assuming that there is no energy flux loss between 
the upstream and downstream sections of the jump until a significant increase in 
the downstream liquid height occurs, the critical gas take-off value is predicted in 
reasonable agreement with observation. 

The tentative conclusions presented in this paper are based on a limited amount 
of data, and the analysis is hoped to prompt the collection of further experimental 
measurements to thoroughly test the validity of the results and to resolve the non- 
uniqueness problem. 
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Appendix A. The flow force expressions 
The flow forces of the gas and liquid are 

[P + P C d D  - h)  + P L A h  - z) + PLu;ldA(4, (A 1b) 

where Ak is the area occupied by phase k .  Upon defining the dimensionless depth of 
the centre of gravity below the interface to be 

the following expressions are obtained: 

P * + r ( l - d ) + d +  

For flows in a channel of square cross-section: 

2 = i d *  
2 '  

A; = d ;  
A; = 1 - d ,  
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and for pipe flows: 

P. A. Roberts and S. Hibberd 

where 0 = 2d - 1. 

Appendix B. The energy boundary equation for channels of square 
cross-section 
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